Das ternäre System Antipyrin-Coffein-Wasser Ein Beitrag zur Kenntnis des Migränins

Von

Robert Kremann und Emmerich Janetzky

Aus dem phys.-chem. Institut der Universität in Graz

(Mit 19 Textfiguren)

(Vorgelegt in der Sitzung am 25. Jänner 1923)

I. Einleitung.

Die Herstellung des Migränins erfolgt durch Anrühren eines Gemisches von ungefähr 90 Teilen Antipyrin, 9 Teilen Coffein und 1 Teil Zitronensäure mit 8 Teilen Wasser, Erwärmen der gesamten Masse auf dem Wasserbade bis zur Trockene und Pulverisieren des Trockenrückstandes.¹

Nach J. J. Hoffmann stellt das Migränin ein Gemenge von $89.4^{0}/_{0}$ Antipyrin, $8.2^{0}/_{0}$ Coffein und $0.56^{0}/_{0}$ Zitronensäure dar.²

Unter Berücksichtigung von Schwankungen in der Zusammensetzung je nach der Fabrikationsmethode dürfen wir aber immerhin sagen, daß die Hauptbestandteile des Migränins Antipyrin und Coffein im Verhältnis von rund 10:1 sind, während die Zitronensäure nach ihren Mengenverhältnissen nur einen Nebenbestandteil des Migränins darstellt.

Wenn wir daher die Vorgänge bei der Darstellung des Migränins phasentheoretisch übersehen wollen, beziehungsweise feststellen wollen, ob das Migränin der Hauptsache nach ein Gemenge ist, wird uns hier in erster Linie das Studium des Dreistoffsystems:

Antipyrin-Coffein-Wasser

aufschlußgebend als Führer dienen können.

¹ Siehe: Scholz, Pharm. Chemie. II, 5, 397, Heidelberg, Winters Verlag, 1912.

² Siehe: Schmitt,^{*}Pharm. Chemie. II, 1522, Viewegs Verlag, 1911.

Wir haben daher das genannte Dreistoffsystem insoweit ausgearbeitet, als der Dampfdruck der Dreistoffmischungen den Atmosphärendruck nicht oder nur unwesentlich überstieg, also ungefähr bis zu den Isothermen von 100°.

Experimenteller Teil.

Die Bestimmung der Gleichgewichtstemperaturen fest – flüssig erfolgte auf thermischem Wege durch Beobachtung der Temperaturen des Auftretens und Verschwindens der ersten Krystalle, beziehungsweise der Knick-, beziehungsweise Haltpunkte auf Zeitabkühlungs-

kurven bei den einzelnen durch Ein-, beziehungsweise Zuwage der Teilstoffe analytisch wohldefinierten binären, beziehungsweise ternären Mischungen.

Da bei jeder einzelnen Bestimmung mit einem größeren oder geringeren Wasserverlust zu rechnen ist, wurde dieser durch Nachwägen des gesamten Gefäßes mit Thermometer und Rührer nach jeder einzelnen Bestimmung ermittelt. Bei den binären Systemen Wasser-Coffein, beziehungsweise Wasser-Antipyrin sowie den ternären Systemen, bei denen jeweils zu einer konstant zusammengesetzten Mischung von Coffein und Antipyrin steigende Mengen Wasser zugegeben wurden (Serie A), wurde der Wasserverlust jeweils als Korrektur von der zugegebenen Menge Wasser in Abzug gebracht.

Bei den Versuchsreihen (Serie B) mit ternären Mischungen, bei denen jeweils das Verhältnis von Antipyrin-Wasser konstant bleiben und der Coffeingehalt steigen sollte, wurde nach jedem Versuch der durch Wägung festgestellte Wasserverlust durch entsprechende Zugabe wieder gedeckt, wodurch erzielt wurde, daß das Verhältnis Antipyrin-Wasser innerhalb jeder Versuchsreihe praktisch konstant blieb.

Die Versuchsergebnisse mit dem binären System

Antipyrin-Coffein

sind in Tabelle I wiedergegeben und in Fig. 1 graphisch dargestellt.

Als Coffein kam ein bei 100° entwässertes Coffeinhydrat, also ein wasserfreies Material in Verwendung. Die der Tabelle I entsprechenden Punkte sind als in Fig. 1 eingezeichnet. Die mit + eingezeichneten Punkte entstammen den Anfangswerten der Versuchsreihen der Serie A, wenn bei diesen der Wassergehalt 0 betrug.

Man sieht aus Fig. 1, daß also Antipyrin und Coffein keinerlei Verbindungen im festen Zustand geben, sondern nur ein einfaches Eutektikum E_1 , und zwar bei 103° und einer Zusammensetzung der Schmelze von 13°/₀ Antipyrin und 87°/₀ Coffein. Diesem System sei zwecks späterer Erörterungen die Ordnungszahl VII erteilt.

Die experimentellen Versuchsdaten mit dem System

Antipyrin-Wasser

sind in Tabelle II wiedergegeben.

Wie man in Fig. 2 sieht, weist die Löslichkeit des Antipyrins E_2B bei der graphischen Darstellung nach Gewichtsbrüchen einen Wendepunkt auf.

Ihr Schnittpunkt mit der Eiskurve AE_2 , das Eutektikum E_2 von Eis und Antipyrin liegt bei — 3·3° und bei 37·5 Gewichtsprozenten Antipyrin.

Andere Bodenkörper (Hydrate) als die Komponenten liegen in diesem System in festem Zustande nicht vor.

Diesem System sei die Ordnungszahl I zugeteilt.

Wie aus der graphischen Darstellung der in Tabelle III wiedergegebenen Versuchsdaten mit dem binären System

Wasser-Coffein

in Fig. 3 (Seite 5) ersichtlich ist, endet die Eiskurve AE_3 im Eutektikum E_3 mit Coffeinhydrat¹ bereits bei einem Gehalt von rund 4 Gewichtsprozent Coffein und -0.4° . Vom Eutektikum steigt die Löslichkeitslinie des Coffeinhydrats $E_3 D$ zunächst sehr steil, dann weniger steil an. Bei einem Gehalt von $31^{\circ}/_{0}$ Coffein und 61° zeigt die Löslichkeitslinie einen scharfen Knick, indem ber

Tabelle I.

Binäres System: Antipyrin-Coffein. VII.

a) Menge: Antipyrin 3.000 g. Zusatz von Coffein.

· · · · ·	-				
Gewichtsprozent Coffein	0.0	4.7	11.8	16.0	$22 \cdot 0$
Temp. der primären Krystallisation	109.0	108.0	106.01	114.01	130.01
Gewichtsprozent Coffein	28.5	35.7	40.6	44.8	48.3
Temp. der primären Krystallisation	$143 \cdot 5$	156.01	164.0	170.5	$175 \cdot 0$
1 Sekundäre eutektische Krystall	lieation	bei 103.0)°		

¹ Sekundäre eutektische Krystallisation bei 103.0°.

¹ Coffein + 1 Mol H₂O.

b) Menge: Coffein 3.000 g. Zusatz von Antipyrin.

Gewichtsprozent Coffein	$100.0 \\ 233.5$	$96 \cdot 5 \\ 230 \cdot 0$	89·0 224·0	$83 \cdot 7 \\ 218 \cdot 5$	$77 \cdot 0$ 212 \cdot 0
Gewichtsprozent Coffein	70·1	63.2	57.9	$53 \cdot 8$	48.6
Temp. der primären Krystallisation	$204 \cdot 0$	194.0	189 · 0	$183 \cdot 0$	175.0

Tabelle II.

Binäres System: Antipyrin-Wasser.

a) Menge: Antipyrin 4.0 g. Zusatz von Wasser.

Gewichtsprozent Antipyrin Temp. der primären Krystallisation.	100 · 0 109 · 0	$96 \cdot 1 \\ 95 \cdot 0$	$94.7 \\ 88.0$	88·5 70·0	$83.0 \\ 56.0$	$78 \cdot 1 \\ 46 \cdot 5$
Gewichtsprozent Antipyrin Temp. der primären Krystallisation.	$72 \cdot 5$ $38 \cdot 0$	$\begin{array}{c} 67 \cdot 0 \\ 30 \cdot 4 \end{array}$	$\begin{array}{c} 61 \cdot 9 \\ 24 \cdot 9 \end{array}$	$57 \cdot 3 \\ 20 \cdot 2$	$52.6 \\ 15.5$	$43 \cdot 6 \\ 6 \cdot 1$
Gewichtsprozent Antipyrin Temp. der primären Krystallisation	$\begin{array}{c} 41 \cdot 2 \\ 2 \cdot 5 \end{array}$	39·1 0·0				

b) Menge: Wasser 10.00 g. Zusatz von Antipyrin.

Gewichtsprozent Antipyrin	0.0	16.7	$26 \cdot 2$	35.4	45.5
Temp. der primären Krystallisation	0.0	- 0.8	1.7	- 2.8	+ 7.01

¹ Sekundäre eutektische Krystallisation bei — 3·3°.

c) Menge: Wasser 5.00 g. Zusatz von Antipyrin.

Gewich	ntspr	ozent Ant	ipyrin	47.8	54.8
Temp.	der	primären	Krystallisation	+11.0 +	18.0

Tabelle III.

Binäres System: Wasser-Coffein (Schnitt XIV).

a) Einzelversuche.

Gewichtsprozent Coffein	0.0	$7 \cdot 2$	$9 \cdot 6$	15.0	20.0	
Temp. der primären Krystallisation	0.0	$32 \cdot 5$	40.5	49.5	$54 \cdot 5$	
Gewichtsprozent Coffein	25.0	30.4	$35 \cdot 5$	40 .0	45.6	59.0
Temp. der primären Krystallisation	58.5	61.0	$67 \cdot 2$	73.0	81:5	100.0

Gewichtsprozent	Temperatur der primären	Bodenkörper der
Coffein	Krystallisation	primären Krystallisation
0.0 0.5		Eis »
$1 \cdot 9 \\ 2 \cdot 1$	-0.30	» 1
$3 \cdot 1$	-1	1
$4 \cdot 5$	13.0	Coffeinhydrat

b) Menge: Wasser 10.00 g.

¹ Die Temperatur der primären Krystallisation von Eis läßt sich, da sie sehr nahe der sekundären eutektischen Krystallisation liegt, nicht genau von dieser getrennt beobachten. Die eutektische Krystallisation erfolgt bei -0.4° .

² Die primäre Krystallisation wurde nicht weiter beobachtet, da die Wasserverluste beim Lösen die erlaubte Grenze überschreiten. Die eutektische Krystallisation wurde hier gleichfalls bei -0.4° beobachtet.

höheren Temperaturen und Coffeingehalten die Löslichkeitskurve wieder steiler und fast gradlinig ansteigt DB. Wir möchten diesen Knickpunkt D als den Umwandlungspunkt des Coffeinhydrates und wasserfreien Coffein ansprechen. Die Wärmetönung sowie die Geschwindigkeit dieser Umwandlung scheint jedoch nicht er- 100 heblich zu sein, da sich auf den Zeitabstück-90 lungskurven ein dieser Umwandlungstempera-80 tur entsprechender Haltpunkt nur undeut-70 lich beobachten ließ. Als Ordnungszahldieses Systems sei XIV festgesetzt. 60

Von den

Temp. 50 ternären Mischungen der Serie A 40 kamen der Reihe nach Versuchsserien zur Untersuchung, in denen /das Verhältnis 30 Antipyrin 20 ieweils konstant war und Coffein 10 95.0900 beziehungsweise beziehungs- $\overline{5.0}$, 10, Gew % Coffein 10 20 30 40 50 80 $\overline{15}$, beziehungsweise $\overline{20}$, beziehungsweise Fig. 3. weise $\frac{1}{30}$, beziehungsweise $\frac{1}{40}$ betrug, und durch entsprechenden,

stufenweisen Wasserzusatz das Verhältnis der jeweils konstant zusammengesetzten binären Mischung von Antipyrin und Coffein einerseits, von Wasser anderseits wechselte.

Die diesbezüglichen Versuchsdaten, als Schnitte II, III, IX, IV, V, VI gekennzeichnet, sind in den Tabellen IV bis IX wiedergegeben,

Binäres System:

XIV. Coffein-Wasser

ċ

2.

die in den Fig. 4 bis 9 auf Grund der mit + bezeichneten Punkte ihre graphische Darstellung finden.

Die mit \circ bezeichneten Punkte entsprechen jeweils den Durchschneidungen mit den Raumschnitten, wie sie den Versuchsreihen der Serie *B* entsprechen, die, wie erwähnt, sich auf Mischungen mit konstantem Verhältnis von Antipyrin und Wasser bei steigendem Coffeingehalt beziehen und aus diesen abgeleitet wurden.

Wie man sieht, ist die Übereinstimmung beider innerhalb der Fehlergrenze eine ganz gute.

Die Resultate der Versuchsreihen der ternären Mischungen der Serie *B*, bei denen jeweils das Verhältnis Antipyrin-Wasser

konstant war und der Reihe nach $\frac{34}{6}$ (Schnitt XI), $\frac{700}{20\cdot 2}$ (Schnitt VIII), $\frac{69\cdot 2}{30\cdot 8}$ (Schnitt X), $\frac{59\cdot 6}{40\cdot 4}$ (Schnitt XII), $\frac{49\cdot 7}{50\cdot 3}$ (Schnitt XIII), $\frac{39\cdot 5}{60\cdot 5}$

(Schnitt XV), $\frac{70\cdot 4}{29\cdot 6}$ (Schnitt XVI) und $\frac{85}{15}$ (Schnitt XVII) betrug, sind in den Tabellen X bis XVII wiedergegeben und in den Figuren 10 bis 17 graphisch dargestellt.

Diese Figuren stellen also in analoger Weise wie früher die Abhängigkeit der Gleichgewichtstemperaturen fest-flüssig von ternären Mischungen, bestehend aus jeweils konstant zusammengesetzten binären Mischungen von Wasser und Antipyrin einerseits, Coffein anderseits, dar.

Die den Tabellen X bis XVII entnommenen Punkte sind auch hier mit +, die aus den Durchschneidungspunkten mit den Raumschnitten der Versuchsreihen der Serie A, auf Grund der Figuren 4 bis 9 abgeleiteten Punkte, mit \circ eingetragen.

Tabelle IV.

System: Konstant zusammengesetzte binäre Mischung von $95 \cdot 0^0/_0$ Antipyrin und $5 \cdot 0^0/_0$ Coffein.

Zusatz von Wasser (Schnitt II).

Gewichtsprozent Wasser	0.0	4.7	7.5	13.6	19.2
Temp. der primären Krystallisation ¹	$107 \cdot 7$	89.0	81.0	62.0	$49 \cdot 0$
Gewichtsprozent Wasser	23.6	$28 \cdot 9$	34.7	38.5	45.4
Temp. der primären Krystallisation ¹	40.5	32.0	$25 \cdot 5$	21.5	16.0

1 Bodenkörper der primären Krystallisation: Antipyrin.

Tabelle V.

System: Konstant zusammengesetzte binäre Mischung von $90 \cdot 0^{0}/_{0}$ Antipyrin und $10 \cdot 0^{0}/_{0}$ Coffein.

Zusatz von Wasser (Schnitt III).

Gewichtsprozent Wasser 0.0	12.3	17.7	$22 \cdot 1$	27.6	$33 \cdot 3$
Temp. der primären Krystallisation 105.5	$62 \cdot 9$	$48 \cdot 1$	$43 \cdot 1$	$34 \cdot 9$	$25 \cdot 7$
Gewichtsprozent Wasser 38.8	44.0	47.5	51.0	$57 \cdot 0$	
Temp. der primären Krystallisation ¹ . 20.5	15.1	11.4	$7 \cdot 9$	0.1	

1 Bodenkörper der primären Krystallisation: Antipyrin.

Tabelle VI.

System: Konstant zusammengesetzte Mischung von $85 \cdot 0^0/_0$ Antipyrin und $15 \cdot 0^0/_0$ Coffein.

Zusatz von Wasser (Schnitt IX).

Gewichtsprozent Wasser	0.0	$4 \cdot 3$	8.8	13.0	18.4
Temp. der primären Krystallisation	108.0	$92 \cdot 0$	70.1	$54 \cdot 51$	$32 \cdot 8^{2}$
Bodenkörper der prim. Krystallisation	*	*	*	*	*
Gewichtsprozent Wasser	23.4	27.5	$31 \cdot 7$	36.5	43.5
Temp. der primären Krystallisation	37.4	$32 \cdot 2$	$25 \cdot 9$	19.5	13.0
Bodenkörper der prim. Krystallisation	**	**	**	***	***

 1 Haltpunkt sekundärer Kyrstallisation des binären Eutektikums von Antipyrin und Coffein bei 49.0°.

² Instabile Krystallisation von Coffein.

* Coffein.

** Antipyrin.

*** Binäres Eutektikum von Antipyrin und Coffeinhydrat.

Tabelle VII.

System: Konstant zusammengesetzte binäre Mischung von $80 \cdot 0^{0}/_{0}$ Antipyrin und 20 $\cdot 0$ Coffein.

Zusatz von Wasser (Schnitt IV).

Gewichtsprozent Wasser	0.0	12.6	20.2
Temp. der primären Krystallisation	$123 \cdot 4$	74 1	46.2
Bodenkörper der prim. Krystallisation	*	*	**

* Coffein.

** Coffeinhydrat.

Tabelle VIII.

System: Konstant zusammengesetzte Mischung von $70 \cdot 0^0/_0$ Antipyrin und $30 \cdot 0^0/_0$ Coffein.

Zusatz von Wasser (Schnitt V).

Gewichtsprozent Wasser 0.0	4.6	8.7	$14 \cdot 1$	18.5	23.1
Temp. der primären Krystallisation145.1	129.0	115.0	$91 \cdot 3$	$73 \cdot 9$	55.0
Bodenkörper der prim. Krystallisation *	*	*	*	*	*
Gewichtsprozent Wasser 27.2	$49 \cdot 9$	56.5			
Temp. der primären Krystallisation 40.5	$24 \cdot 2$	20.2			
Bodenkörper der prim. Krystallisation	**	**			

- ¹ Instabile Krystallisation von Coffein. Der stabile Bodenkörper ist Coffeinhydrat.
- * Coffein.
- ** Coffeinhydrat.

Tabelle IX.

System: Konstant zusammengesetzte Mischung von $60.0^{0}/_{0}$ Antipyrin und $40.0^{0}/_{0}$ Coffein.

Zusatz von Wasser (Schnitt VI).

Gewichtsprozent Wasser	0.0 1631	$30.7 \\ 50.52$	$36 \cdot 3 \\ 47 \cdot 0^{2}$	$40.1 \\ 44.42$	$44 \cdot 3 \\ 40 \cdot 5^{2}$
Gewichtsprozent Wasser Temp, der primären Krystallisation	$52 \cdot 3$ $34 \cdot 2^2$	58·3 29·32	$62 \cdot 6$ 28 \cdot 0 ²		

¹ Bodenkörper der prim. Krystallisation; Coffein. ² » » » » Coffeinhydrat.

Tabelle X.

System: Konstant zusammengesetzte Mischung von $94 \cdot 0^{0}/_{0}$ Antipyrin und $6 \cdot 0^{0}/_{0}$ Wasser.

Zusatz von Coffein (Schnitt XI).

Gewichtsprozent Coffein	0.0	$4 \cdot 9$	10.9	14.9	19.18
Temp. der primären Krystallisation	89.0	85.0	81.5	89.0	105.0
Bodenkörper der prim. Krystallisation	*	*	*	**	**

- * Antipyrin.
- ** Coffein.

Tabelle XI.

System: Konstant zusammengesetzte binäre Mischung von $79\cdot8^{0}/_{0}$ Antipyrin und $20\cdot2^{0}/_{0}$ Wasser.

Zusatz von Coffein (Schnitt VIII).

Gewichtsprozent Coffein	0.0	6.1	10.3	14.0	18.7
Temp. der primären Krystallisation	48	47.5	47.5	48.0	62.5
Bodenkörper der prim. Krystallisation	*	*	*	**	***
Gewichtsprozent Coffein	$22 \cdot 2$	26.0			
Temp. der primären Krystallisation	71.0	86.0			
Bodenkörper der prim, Krystallisation	***	***			

- * Antipyrin.
- ** Coffeinhydrat.

*** Coffein.

Tabelle XII.

System: Konstant zusammengesetzte Mischung (binär) von 69.2% Antipyrin und 30.8% Wasser.

Zusatz von Coffein (Schnitt X).

Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	$0.0 \\ 33.5 \\ *$	$5 \cdot 1$ 33 · 0 *	$10.9 \\ 32.5 \\ *$	15·2 39·0 **	19·9 47·0 **
Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	$24 \cdot 6 \\ 57 \cdot 6 \\ ***$	29 · 0 76 · 0 ***	34·4 91·0 ***		

* Antipyrin.

** Coffeinhydrat.

*** Coffein.

Tabelle XIII.

System: Konstant zusammengesetzte Mischung von $59 \cdot 6^0/_0$ Antipyrin und $40 \cdot 4^0/_0$ Wasser.

Zusatz von Coffein (Schnitt XII).

Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	0.0 23.2 *	$5.7 \\ 21.5 \\ *$	$11 \cdot 1$ $22 \cdot 0$ **	$15.6 \\ 31.5 \\ **$	$19 \cdot 9 \\ 39 \cdot 5 \\ **$
Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	$25 \cdot 0$ $47 \cdot 0$ **	$30.0 \\ 61.2 \\ ***$	34·8 77·0 ***	39·6 88·0 ***	$45 \cdot 2 \\ 100 \cdot 0 \\ ***$

* Antipyrin.

** Coffeinhydrat.

*** Coffein.

Tabelle XIV.

System: Konstant zusammengesetzte binäre Mischung von $49 \cdot 7^{0}/_{0}$ Antipyrin und $50 \cdot 3^{0}/_{0}$ Wasser.

Zusatz von Coffein (Schnitt XIII).

Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	$0.0 \\ 13.0 \\ *$	$5 \cdot 1$ 11 · 0 *	10·8 19·2 **	$16 \cdot 4 \\ 31 \cdot 5 \\ **$	20·2 38·5 **
Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation	$25 \cdot 2 \\ 45 \cdot 2 \\ **$	29·8 50·5 **	35 · 8 66 · 5 ***	40 0 78 5 ***	

* Antipyrin.

** Coffeinhydrat.

*** Coffein.

Tabelle XV.

System: Konstant zusammengesetzte Mischung von $39 \cdot 5^0/_0$ Antipyrin und $60 \cdot 5^0/_0$ Wasser.

Zusatz von Coffein (Schnitt XV).

Gewichtsprozent Coffein 0.0 5.6 11.0 $15 \cdot 3$ $19 \cdot 2$ $24 \cdot 9$ Temp. der primären Krystallisation 0.0 -0.31 14.5 $25 \cdot 0$ 35.545·3 * * ** ** ** ** Bodenkörper der prim. Krystallisation...

¹ Krystallisation des ternären Eutektikums bei - 4.0°.

* Antipyrin.

** Coffeinhydrat.

Gewichtsprozent Coffein	30.0	36.2	39.8	44.0	48.3
Temp. der primären Krystallisation	51.0	59.2	70.0	80.5	91.5
Bodenkörper der prim. Krystallisation	**	***	***	***	***

** Coffeinhydrat.

*** Coffein.

Tabelle XVI.

System: Konstant zusammengesetzte binäre Mischung von $15 \cdot 0^0/_0$ Antipyrin und $85 \cdot 0^0/_0$ Wasser.

Zusatz von Coffein (Schnitt XVII).

Gewichtsprozent Coffein Temp. der primären Krystallisation . Bodenkörper der prim. Krystallisation	$-\frac{1}{*}$	$-\frac{2 \cdot 8}{1 \cdot 5}$	4.7 	7·8 16·0 **	9·9 23·5 **	15·1 35·6 **
Gewichtsprozent Coffein Temp. der primären Krystallisation . Bodenkörper der prim. Krystallisation	$21 \cdot 8 \\ 45 \cdot 0 \\ **$	$\begin{array}{cccc} 26 \cdot 6 & 29 \\ 50 \cdot 5 & 54 \\ ** & * \end{array}$)•8 35•4 •5 58•(** **	40·2) 64·0 ***	45·1 73·5 ***	50·3 84·0 ***

* Eis.

** Coffeinhydrat.

*** Coffein.

Tabeile XVII.

System: Konstant zusammengesetzte binäre Mischung von $29.6^{0}/_{0}$ Antipyrin und $70.4^{0}/_{0}$ Wasser.

Zusatz von Coffein (Schnitt XVI).

Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörper der prim. Krystallisation .	$0.00 \\ -2.0 \\ *$	$6.0 \\ 0.0 \\ **$	11·00 13·0 **	$15.5 \\ 26.0 \\ **$	$19.8 \\ 37.0 \\ **$	$24 \cdot 8 \\ 44 \cdot 5 \\ **$
Gewichtsprozent Coffein Temp. der primären Krystallisation Bodenkörner der prim. Krystallisation	$30 \cdot 2 \\ 51 \cdot 0 \\ **$	$35 \cdot 7 \\ 56 \cdot 0 \\ **$	39·5 62·5 ***	$45 \cdot 0 \\ 77 \cdot 0 \\ ***$	49·8 89·0 ***	$54.6 \\ 99.0 \\ ***$

* Eis.

** Coffeinhydrat.

*** Coffein.

Aus diesen Figuren 4 bis 17, die Vertikalschnitten durch das ternäre Raummodell entsprechen, läßt sich in bekannter Weise dessen Vertikalprojektion in Fig. 18 wiedergeben.

Bei Konstruktion der Isothermenlinien wurden die in den Fig. 4 bis 17 mit • markierten Punkte zugrunde gelegt.

Die Geraden XIV—II, III, IX, IV, V, VI stellen den geometrischen Ort der Konzentrationen der Mischungen verschiedenen jeweils konstanten Verhältnisses Antipyrin/Coffein bei steigendem Wassergehalt dar, wie sie den Versuchsreihen der Serie A entsprechen, die Geraden VII-XI, VIII, X, XII, XIII, XV, XVI, XVII entsprechen dem geometrischen Ort der Konzentrationen der Mischungen konstanten Verhältnisses Antipyrin/Wasser bei steigendem Coffeingehalt, gemäß den Versuchsdaten, respektive Reihen der Serie B, die Dreieckseiten: I-XIV dem binären System Antipyrin-Wasser;

I-VII dem binären System Antipyrin-Coffein;

XIX-VII dem binären System Coffein-Wasser.

Aus den Schnittpunkten der Isothermen einerseits, den Schnittpunkten, beziehungsweise Knickpunkten in den Schnitten in den Fig. 1–17, läßt sich leicht der Verlauf der binären eutektischen Kurven, sowie der Umwandlungskurve von Coffein/Coffeinhydrat in den Dreistoffmischungen ableiten. Die Umwandlungskurve $D_1 D_3$,

Fig. 18.

die unter stetigem Temperaturabfall im Punkte D_2 die Isotherme von 60°, im Punkte D_3 die Isotherme von 50° schneidet, findet im nonvarianten Punkte D_4 in der binären eutektischen Kurve mit Antipyrin ihren natürlichen Abschluß.

Auf der binären eutektischen Kurve mit Antipyrin $E_1 D_4 E_4$ liegen längs E_1 bis D_4 Antipyrin und wasserfreies Coffein, von D_4 bis E_4 Antipyrin und Coffeinhydrat als Bodenkörper vor.

Der natürliche Endpunkt dieser Kurve E_4 , das ternäre Eutektikum zwischen Antipyrin, Coffeinhydrat und Eis, ergibt sich aus dem Schnittpunkt der genannten Kurve $E_1 D_4 E_4$ mit der binären eutektischen Kurve zwischen Eis und Coffeinhydrat $E_3 E_4$ und entspricht einem Gehalt von $60^{\circ}/_{0}$ Wasser, $35^{\circ}/_{0}$ Antipyrin und $5^{\circ}/_{\circ}$ Coffein und einer Temperatur von - 4.0°.

Durch Verbindung des ternären Eutektikums E_4 mit dem naheliegenden binären Eutektikum E₂ zwischen Antipyrin und Eis läßt sich die dritte binäre eutektische Kurve zwischen Eis und Antipyrin E_2 , E_4 festlegen.

Um den Temperaturabfall der eutektischen Kurven $E_1 E_4$, beziehungsweise $E_4 E_3$ sowie der Umwandlungskurve übersichtlich darzustellen, haben wir den Verlauf dieser Kurven auf einem ebenen t, x-Koordinatensystem in Fig. 19 graphisch dargestellt. Fig. 19 stellt also eine Projektion des Raummodelles von der reinem Coffein

entsprechenden Kante in die dem binären System Antipyrin-Wasser entsprechenden Seitenfläche des 100 Raummodelles dar, d. h. die Konzentrationsachse entspricht dem jeweiligen Verhältnis Antipyrin-Wasser.

Aus der analogen Bezeich- 60 nung der einzelnen Punkte der 50 Fig. 19 ist ihre Bedeutung nach den 40 obigen Ausführungen sofort klar.

Die binäre Eis-Coffeinhydrat- 30 kurve $E_3 E_4$ verläuft entsprechend z_0 der Darstellung nach Gewichts- 10 prozenten wenig abfallend mit der Temperatur.

von Antipyrin und Coffein $E_1 D_4$ fällt mit steigendem Wassergehalt zunächstrasch, später weniger raschab.

Fig. 19.

Etwas geringer ist anfänglich der Temperaturfall längs der binaren eutektischen Kurve Antipyrin-Coffeinhydrat $D_4 E_4$, die jedoch einen leichten Wendepunkt aufweist, so daß nahe vom ternären Eutektikum E_4 ein etwas stärkerer Temperaturfall einsetzt.

Die Umwandlungskurve $D_1 D_2 D_3 D_4$ verläuft, wie Fig. 19 es zeigt, mit steigendem Antipyringehalt unter verhältnismäßig geringen. jedoch ziemlich stetigem Temperaturfall vom binären Umwandlungspunkt D, zu ihrer Einmündung den nonvarianten Gleichgewichtspunkt D_4 , der einer Temperatur von rund 47° und einer Zusammensetzung der Schmelze von: 16% Wasser, 13% Coffein und 71% Antipyrin entspricht.¹

¹ Die verhältnismäßig geringe Depression, die der binäre Umwandlungspunkt D_1 bei steigendem Antipyrinzusatz erfährt, zeigt, daß diese Umwandlung von relativ geringer Wärmetönung begleitet ist, und macht verständlich, weshalb auf den Zeitabkühlungskurven, die dieser Umwandlung entsprechenden Halt-, beziehungsweise Knickpunkte nur so undeutlich zum Ausdruck kommen, abgesehen von der gleichsinnig wirkenden langsamen Bildungsgeschwindigkeit des Hydrates.

Wie man aus der Vertikalprojektion des Raummodelles sieht, teilen die diskutierten vier Kurven univarianter Gleichgewichte, die durch die sechs nonvarianten Gleichgewichtspunkte E_1, E_2, E_3, E_4, D_1 und D_4 begrenzt werden, die folgenden vier Felder divarianter Gleichgewichte ab:

- I. $E_2 E_4 D_4 E_1$, das Existenzfeld des Antipyrins, in dem sich primär Antipyrin abscheidet.
- VII. $E_1 D_4 D_3 D_2 D_1$, das Existenzfeld des wasserfreien Coffeins in dem sich primär wasserfreies Coffein primär abscheidet.
- $D_1 \ D_2 \ D_3 \ D_4 \ E_4 \ E_3,$ das Existenzfeld des Coffeinhydrats, in dem sich also primär Coffeinhydrat abscheidet, und schließlich

XIV. $E_3 E_4 E_2$, das Eisfeld, in dem sich primär Eis abscheidet.

Nutzanwendung auf die Darstellung und Charakterisierung des Migränins.

Erörtern wir die Vorgänge, die sich abspielen, wenn wir Antipyrin, Coffein und Wasser in den Mengenverhältnissen, wie sie nach dem in der Einleitung Gesagten bei der Darstellung Verwendung finden.

Die Mengenverhältnisse dieser drei Stoffe würden rund etwa

85%/ Antipyrin, 8%/ Coffein und 7%/ Wasser,

also etwa dem Punkt P in Fig. 18 entsprechen:

Eine solche Mischung würde also, im Antipyrinfeld liegend, bei etwa 78° primär Antipyrin ausscheiden. Bei isothermer Einengung auf dem Wasserbade würde unter Wasserverlust und Abscheidung von Antipyrin die Lösung coffeinreicher, hierbei etwa der gestrichelt gezeichneten Krystallisationsbahn PP_1 folgend, bis im Punkte P_1 bei einem Gehalt von etwa

 $81 \cdot 5^{0}/_{0}$ Antipyrin, $13^{0}/_{0}$ Coffein und $5 \cdot 5^{0}/_{0}$ Wasser

die eutektische Kurve $E_1 D_4 E_4$ erreicht wird; d. h. es scheidet sich von nun ab unter Wasserverlust das eutektische Gemenge von Antipyrin und Coffein ab.

Die trockene Mischung stellt demgemäß chemisch ein Gemenge von Antipyrin und Coffein dar, strukturell besteht sie der Hauptsache nach aus dem Eutektikum von Antipyrin und Coffein, als den einen Bestandteil, in dem kleinere Mengen der primär abgeschiedenen Antipyrinkrystalle eingebettet sein werden.

Diese Überlegungen lassen sich ohneweiters auf die Migränindarstellung als solche sinngemäß übertragen, bei der gegenüber dem besprochenen Falle ein Unterschied nur insofern vorliegt, daß geradezu als »Verunreinigung«, wenn man so sagen darf, etwas Zitronensäure beigesetzt ist.

Denn deren Menge macht in bezug auf den Antipyringehalt ungefähr nur ein Prozent aus. Hiermit befinden wir uns in einem Vierstoffsystem. Die Wirkung des kleinen Zitronensäurezusatzes ist etwa die folgende:

Die geringe Menge Zitronensäure verbraucht zweifelsohe der Hauptsache nach die ihr äquivalente Menge Antipyrin unter Bildung von zitronensaurem Antipyrin.¹

Hierdurch wird einmal Punkt P eine Verschiebung nach einer tieferen Temperatur und näher an die binäre eutektische Kurve $E_1 E_4$ von Antipyrin und Coffein erfahren, die jedoch im Hinblick auf die geringen Mengen Zitronensäure, die in Betracht kommen, kaum erheblich sein wird.

Ein der Darstellung des Migränins entsprechendes Gemisch wird demgemäß primär gleichfalls noch etwas Antipyrin ausscheiden, bei isothermer Einengung sich jedoch als bald gleichzeitig Coffein abzuscheiden beginnen.

Hierbei gelangt die Lösung naturgemäß auf die binäre eutektische Fläche des Eutektikums Antipyrin-Coffein des Vierstoffsystems Antipyrin-Coffein-zitronensaures Antipyrin-Wasser, längs der auf bestimmter Krystallisationsbahn sich also wiederum das binäre Eutektikum Coffein-Antipyrin ausscheiden wird, bis schließlich die ternäre eutektische Kurve Coffein-Antipyrin-zitronensaures Antipyrin erreicht wird. Längs dieser Kurve erfolgt dann neben Krystallisation der letzten Reste von Coffein und Antipyrin die Abscheidung des in geringer Menge vorhandenen zitronensauren Antipyrins.

Chemisch dürfte also das Migränin aufzufassen sein als ein Gemenge von Coffein und Antipyrin, neben geringen Mengen von zitronensaurem Antipyrin, strukturell besteht es der Hauptsache nach aus dem feinkrystallinen binären Eutektikum von Coffein und Antipyrin, in das relativ kleine Mengen einerseits des überschüssigen primär abgeschiedenen Antipyrins, anderseits das zuletzt abgeschiedene ternäre Eutektikum von Coffein-Antipyrin-zitronensaures Antipyrin eingebettet sein werden.

¹ Über die Bildung von Verbindungen von Antipyrin mit Säuren, vergl. R. Kremann und H. Marktl, Monatsh. f. Chem. 41, 1, 1920. Unsere Versuche, das Zustandsdiagramm Zitronensäure-Antipyrin aufzunehmen, scheiterten an der Viskosität der Schmelzen, sobald der Gehalt an Zitronensäure wenige Gewichtsprozente betrug.